

1

UNIT-1

Analysis and Design

Analysis emphasizes an investigation of the problem and requirements, rather than a solution. For
example, if a new computerized library information system is desired, how will it be used?

"Analysis" is a broad term, best qualified, as in requirements analysis (an inves-tigation of the
requirements) or object analysis (an investigation of the domain objects).

Design emphasizes a conceptual solution that fulfills the requirements, rather than its implementation.
For example, a description of a database schema and software objects. Ultimately, designs can be
implemented.

Analysis and design have been summarized in the phase do the right thing (analysis), and do
the thing right (design).

 Object-Oriented Analysis and Design

During object-oriented analysis, there is an emphasis on finding and describ-ing the objects—or
concepts—in the problem domain. For example, in the case of the library information system,
some of the concepts include Book, Library, and Patron.

During object-oriented design, there is an emphasis on defining software objects and how
they collaborate to fulfill the requirements. For example, in the library system, a Book software
object may have a title attribute and a getChap-ter method

Finally, during implementation or object-oriented programming, design objects are implemented,
such as a Book class in Java.

domain concept

Book

title

visualization of

domain concept

representation in an

object-oriented

programming language

public class Book {

private String title;

public Chapter getChapter(int) {...} }

2

TYPICAL ACTIVITIES / WORKFLOWS / DISCIPLINES IN OOAD

The Unified Process has emerged as a popular software development process for building object-
oriented systems.

UP Phases

A UP project organizes the work and iterations across four major phases:

1. Inception— approximate vision, business case, scope, vague estimates.

2. Elaboration—refined vision, iterative implementation of the core
architec ture, resolution of high risks, identification of most
requirements and scope, more realistic estimates.

3. Construction—iterative implementation of the remaining lower
risk and easier elements, and preparation for deployment.

4. Transition—beta tests, deployment.
Inception is not a requirements phase; rather, it is a kind of feasibility phase, where just
enough investigation is done to support a decision to continue or stop.

Elaboration is not the requirements or design phase; rather, it is a phase where the core
architecture is iteratively implemented, and high risk issues are mitigated.

Schedule-oriented terms in the UP

development cycle

iteration phase

inc.

ela

borat

ion

con

struc

tion

trans

ition

milestone

An iteration end-

point when some

significant decision

or evaluation occurs.

release

A stable executable

subset of the final

product. The end of

each iteration is a

minor release.

increment

The difference

(delta) between the

releases of 2

subsequent iterations.

final production

release

At this point, the

system is released

for production

3

UP Disciplines

There are several disciplines in the UP

• Business Modeling: The Domain Model artifact,to visualize noteworthy concepts
in the application domain.

• Requirements:The UseCase Model and Supplementary Specification Artifacts to
capyure functional and non-functional requirements.

• Design: The Design Model artifact,to design the software objects.

• Implementation:Programming and building the system,not deploying it.

• Environment:Refers to establishing the tools and customizing the process for the
project.

Iterative Development

Development is organized into a series of short, fixed-length (for example, four week) mini-

projects called iterations; the outcome of each is a tested, integrated, and executable system.

Each iteration includes its own requirements analysis, design, implementation, and testing

activities.

Early iterative process ideas were known as spiral development and evolution-ary
development [Boehm.88, Gilb88].

 Requirements

 Design Time

 Implementatio

Test & Integra

n &

tion

 & More Design
 Final Integrat ion

 & System Test

 Requirements

 Design

 Implementation

Test & Integratio

&

n

 & More Design

 Final Integratio n

 & System Test

Feedback from

iteration N leads to

refinement and

adaptation of the

requirements and

design in iteration

N+1.

4 weeks (for example)

Iterations are fixed in

length, or timeboxed.

The system grows

incrementally

4

Benefits of Iterative Development

Benefits of iterative development include:

• early rather than late mitigation of high risks (technical,

requirements, objectives, usability, and so forth)

• early visible progress

• early feedback, user engagement, and adaptation, leading to a refined

sys tem that more closely meets the real needs of the stakeholders

• managed complexity; the team is not overwhelmed by "analysis

paralysis" or very long and complex steps

• the learning within an iteration can be methodically used to improve

the development process itself, iteration by iteration

The UML

The Unified Modeling Language (UML) is a language for speci-fying, visualizing,

constructing, and documenting the artifacts of software systems, as well as for

business modeling and other non-software systems

Three Ways To Apply UML:

• UML AS SKETCH:Informal and incomplete Diagrams created to

explore difficult parts of the problem or solution space,exploiting the

power of visual languages.

• UML AS BLUEPRINT: Detailed Design Diagrams are used for

Reverse Engineering to visualize and better understanding existing code

in UML Diagrams or for Forward Engineering (Code Generation)

• UML AS PROGRAMMING LANGUAGE: Complete execution

specification of a software system in UML.Executable Code will be

automayically generated but is not normally seen or modified by

developers;one works only in UML programming language.

THREE PERSPECTIVES TO APPLY UML:

• CONCEPTUAL PERSPECTIVE:The diagrams are interpreted

as describing things in a situation of the real world or domain of

interest.

• SPECIFICATION(S/W)PERSPECTIVE:The diagrams

describe software abstractions or components with specifications

and interfaces but no commitment to a particular

implementation.

• IMPLEMENTATION(S/W) PERSPECTIVE: The diagrams

describe software implementations in aparticular technology.

5

MAPPING DISCIPLINES TO UML ARTIFACTS

Sample Development Case of UP artifacts, s - start; r - refine

Discipline Artifact

Iteration-*

Incep.

11

Elab.

El. .En

Const.

CL.Cn
Trans.

T1..T2
Business Modeling Domain Model s

Requirements Use-Case Model s r

Vision s r

Supplementary Specification s r

Glossary s r

Design Design Model s r

SW Architecture Document s

Data Model s r

Implementation Implementation Model s r r

Project Management SW Development Plan s r r r

Testing Test Model s r

Environment Development Case s r

INTRODUCTION TO DESIGN PATTERNS

DESIGN PATTERN: A template for how to solve a problem that can be used in many

situations.

Design Patterns systematically names , explains and evaluate an important and recurrent

design in OOdesign.

The goal of the Design Pattern is to capture the Design experience in a form that people can

use effectively.

Goals Of A Good Design

Flexibility: Actions for Change

• Identify

• Change

• Test

Extensibility:The ability to add new functionality with ease.

Maintainability: The togetherness of flexibility , extensibility , fixing of bugs and

refactorings.

6

MVC Architecture:

MVC consists of three kinds of objects :

M: Model is the application object.

V: View is the screen presentation.

C: Controller is the way the user interface reacts to user input.

• MVC decouples to increase flrxibility and reuse.

• MVC decouples views and models by establishing a subscribe or notify protocol

between them.

• A view must ensure that its appearance must reflect state of the model.

• Whenever the model’s data changes the model notifies views that depends on it.

• We can also create new views for a model without re-writing it.

• The model contains some data values and the views defining a spread sheet,histogram

and the pie chart displays these data in various ways.

• The model communicates with its value changes and views communicate with the

model to access these values.

• Feature of MVC is that views can be nested.

7

MVC Architecture:

· a b C

x 60 30 10

 y 50 30 20

 z 80 10 10

0

10

20

30

40

50

60

70

80

90

1 2 3

Series1

Series2

Series3

1

2

3

a=50%

b=30%

c=20%

